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Abstract
Efforts such as the Army's Rotorcraft Pilot's Associate (RPA) Advanced Technology Transition
Demonstration (ATTD) Program have requirements for real-time execution of knowledge-based systems.
However, existing computer hardware platforms and software systems (languages, tools, shells, etc.) are
not adequate for applications requiring real-time knowledge-based processing. This is not surprising since
knowledge-based systems have historically been developed with non-real-time applications as their
primary focus (e.g., expert medical consultants, off-line diagnostics, advisors, etc.). Further, these
applications generally were not concerned with run-time efficiency, optimal use of computer resources,
embedded system requirements (size, weight and power) and other considerations important in
addressing real-time processing. The fundamental design concepts necessary for real-time performance
were not considered in the design of the languages, shells and tools used for knowledge-based
processing.

This paper describes research in the development of a real-time knowledge-based system execution
environment suitable for use in next-generation Army helicopters. The paper first describes the unique
problems which must be solved in real-time knowledge processing applications. We then describe an
overall processing architecture for achieving the requisite real-time performance. The execution
environment is being specifically designed for embedded applications such as the mission equipment
package of the RAH-66 Comanche helicopter. The environment will provide the requisite software
execution facilities which heretofore have not been available in an integrated embedded execution
environment. Further, this execution environment will provide the necessary control features required to
manage real-time problem solving.

What is Real-Time AI Processing?
 Traditionally, computer science has defined a real-time system as a system which must not only provide
the correct answer but provide it within strict time constraints. As we shall see, this definition is not
adequate for AI processing systems. Al researchers have no generally accepted definition of real-time AI.
Many have assumed that faster execution is an acceptable method for attaining real-time performance.
To that end, previous approaches to real-time AI have concentrated on speed-up of the process. This
speed-up has been accomplished in a number of ways. Solutions tried include:

• Separation of development and run-time environments.
• Use compiled rather than interpreted code.
• Use a faster language, e.g., C rather than LISP.
• Use special purpose hardware, e.g., associative processors, LISP machines and parallel

architectures.
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For example Marsh states that "A system exhibits real time behavior if it is predictably fast enough for use
by the process being serviced."[1] Certainly, a real-time AI processor must provide timely response, i.e., it
must be able to provide an answer when needed. Data will be received from the external environment at
a certain rate, and the system must make the best decisions and give the best possible response within
the allotted processing time [2].

O'Reilly and Cromarty provide a slightly more rigid definition. They require that "there is a strict time limit
by which the system must have produced a response, regardless of the algorithm employed."[3]
However, providing a response within a strict time limit is difficult. This is because of the nature of AI
processing and the nature of the problems solved using AI techniques. AI systems are, by nature,
adaptable to both their external and processing environments. The complexity of these systems prevents
a priori knowledge of their behavior. Thus it is impossible to precalculate all possible combinations of
tasks which may occur. Therefore, we cannot be assured that the system will arrive at the one correct
answer within a certain time constraint.

Guaranteed response time is essential in hard real-time systems. The system must be able to assess the
time it has available to achieve a goal, provide different levels of solution that may range from reflex-type
reactions to in-depth reflective inferencing, and assess goal priorities and timings in order to make the
appropriate resource allocations.

A real-time AI processing system must he able to operate and manage limited available computational
resources (i.e., computing power, processing time, memory space). It must have an efficient means of
focusing attention on relevant portions of the domain without ignoring on-going processes. The system
will have to decide what actions to take based on multiple (and not necessarily consistent) objectives [2).

A real-time system must provide the best possible answer in the time allowed for processing. For many
real-time applications, a variety of tasks will exist in which the amount of time available to make a decision
does not always allow time for a considered decision. In some cases, it is desirable to make a hasty
decision in limited time if sufficient time is not available for making a more considered decision [4].

A real-time AI system will use approaches that allow programs to meet deadlines (i.e., real-time
constraints). Conventional approaches assume that a task's priorities and resource needs (including time)
are known a priori and are unrelated to other tasks so that the operating system or executive can
schedule tasks based on their individual characteristics. If more tasks exist than the system can process,
then the system simply ignores the task (usually based on priority). The basic notion required for
intelligent real-time knowledge-based systems is that time is an integral component to planning an
execution. Recognizing imminent deadlines in solutions should cause the system to revert to approximate
reasoning methods [5].

AI based tasks are interdependent because they search different parts of the solution space to solve
related subproblems. Because the solution space is too large to search exhaustively, search is heuristic
and only a small number of potential tasks are performed. A problem solver may be able to make
estimates about the amount of time required to solve a problem. However, it cannot precisely determine
the time needed because the information that influences heuristic decisions might change as the search
progresses. Moreover, solving some subproblems can affect the importance and time required to solve
related subproblems.

A focusing mechanism constrains search (in the inference process) for knowledge that is relevant to the
current state of the problem and is thus eligible for execution. This is important because many inferencing
mechanisms implement search algorithms which, if not constrained, result in combinatorial explosion.
Focusing requires explicitly representing control knowledge and making this knowledge available to the
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inference process. Control knowledge is used to guide the inference process and focus it on the relevant
and important portions of the KB. Control knowledge is used to resolve trade-offs (such as immediacy vs.
accuracy or degree of certainty vs. level of abstraction) and prioritize sub-problems.

Given the nature of AI processing, we define a real-time AI system as a system which can guarantee an
acceptable solution within the available time constraints. The acceptability of the solution and the
available time constraints are determined by the system designer.

Issues In Real-Time AI System Design
Since, we are interested in obtaining an appropriate answer under time constraints, it is important to
consider the performance limitations placed on AI systems by the underlying algorithms and data
structures. The goal of our research has been to address and understand the underlying problems with
search algorithms, pattern matching algorithms, inferencing techniques, control methods and knowledge
representation schema used in real-time systems. A real-time system must be designed with careful
consideration to the performance attainable using these underlying algorithms and representation
schema.

Search Algorithms
Search algorithms are ubiquitous to AI systems. Many times, search algorithms are included in a system
design without consideration of how their performance impacts overall knowledge processing
performance. Analysis by O'Reilly and Cromarty [3] has shown that search time in a production system
which uses forward chaining increases exponentially with an increase in the search space. The number of
rules that will fire increases exponentially with the depth of the inference tree.

They also showed that in backward chaining (whether using breadth-first or depth-first search), every
increment in the depth of the tree gives an exponential increase in the number of tree nodes and a
combinatorial increase in the number of paths to search. The greater the branching factor of a node, the
quicker the exponential increase.

It should be noted that even though a search algorithm's performance degrades exponentially, it is still
possible to place bounds on the search time. However, a worst case analysis may result in search times
that are unacceptable for many applications. Obviously more powerful methods of handling search are
required. Recent research by Korf provides an example of how improved search algorithms can improve
overall system performance and enhance the overall "intelligent" problem solving of knowledge based
systems. Korf has developed search algorithms which provide the ability to commit to an action almost
instantaneously, but allow the quality of that decision to improve as long as time is available. Once a
deadline is reachable, the best decision arrived at is executed. For instance his Real-Time A* (RTA*)
algorithm allows backtracking while still guaranteeing a solution and making locally optimal decisions [6-
10].

Pattern Matching Algorithms
The Rete algorithm is the most common algorithm for use in production system pattern matching and is
found in most systems including CLIPS, ART and OPS5 [11]. Rete was initially developed for use in non-
real-time systems and exhibits unpredictable response times. Haley has addressed problems with the
Rete algorithm when used in real time. His major concern is needing proof rather than accepting the real-
time performance of a less-than-exhaustive set of test cases. According to Haley, the Rete algorithm is
not well suited to the formal analysis required to assure real-time performance [12]. His analysis shows
that one cannot a priori calculate the cost (that is the number of joins, where a join is an instantiation of a
variable across patterns) of adding an assertion to the working memory using the Rete algorithm.
Instantiating a join results in unpredictable response times. There are a number of possible solutions to
the shortcomings of the Rete algorithm. Haley presents several methods for bounding the cost of
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matching a rule including join matching limitations, pattern instantiation restrictions, relation instance
restrictions and cardinality restrictions.

There exists the possibility that these restrictions might compromise some of the power and flexibility of
the production system approach to problem solving. For non-developmental (i.e., embedded)
environments, these restrictions may be acceptable given that they can help guarantee real-time
performance.

Knowledge Representation
Knowledge representation issues concern both representation of the knowledge base (KB) and the
incoming data. The mechanisms used for knowledge representation significantly influence the
performance of a knowledge processing system. Frame languages use an instance relation to allow
properties and default values to be inherited from generic type frames and retrieve and process all
instances of a given type at run time. By adding a second relation, is-a, and using it to organize type
frames in an organizational hierarchy, frame languages can support object-oriented programming.

The inheritance network forms a tree with a single root. By inheritance, we mean that each class can
have at most one superclass and only two relations are defined, is-a and instance. Retrieving a value
from a slot consists of following a simple linear list. Worst case times can easily be calculated for
retrieving and storing values in the hierarchical tree (O(d)), where d is the depth of the inheritance tree.
Thus, frame languages using only simple inheritance are suitable for keeping tight bounds on response
times in real-lime problems [4].

Newer and more powerful languages (e.g., the latest version of C++) allow defining new relations
between frames. Objects can have more than one superclass (i.e., multiple or mixed inheritance).
Although multiple inheritance allows the user to gain additional expressiveness, it brings a new class of
problems that must be solved. An inheritance network, in effect, becomes an arbitrary directed graph.
Retrieving a value from a slot now involves some type of search (depth first or breadth first). These types
of strategies are not be suitable for real-time applications because of their exponential nature. Therefore
the knowledge representation methods used for an embedded real-time system may be coil-strained to
the simple frame-based representations.

Knowledge Organization
The organization of knowledge within the real-time processing environment also significantly affects real-
time performance. Knowledge must be organized in such a way to make knowledge access more
efficient. A number of researchers have suggested knowledge chunking as an effective way of organizing
knowledge for real-time applications. The basic idea is to organize knowledge in modules or chunks. In
the course of problem solving, if no production rule can be found that solves a problem, the system can
reference (a chunk of) deep knowledge that may suggest a multi-step sequence of productions to solve
the problem. This sequence is then added to the KB so it will be readily available as a single macro when
needed again. Modular chunks can exist in either an on or off state. By associating knowledge with
attributes, the inference engine can be invoked by referencing specific attributes [13].

Active knowledge (i.e., rules) can be encapsulated in modules whose properties (time and resource
requirements, synchronization requirements, conflicts, etc.) can be expressed, reasoned about, and
controlled. These modules are organized into generalized scripts we term Skeletal Processing Structures
(SPS) that correspond to pre-formulated processing plans designed to provide responses to the system's
processing requirements. At run-time, meta-knowledge operates on these scripts and creates specialized
instances to satisfy specific constraints and then executes them.



Copyright © 1992 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from the Proceedings of the 11th Digital Avionics Systems
Conference, Seattle, WA, October 5-8, 1992.  This material is posted here with permission of IEEE. Such permission of the IEEE does not in any way imply IEEE
endorsement of any of Reticular Systems' products or services. Internal or personal use of this material is permitted. However permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank
email message to info.pub.permission@ieee.org.   By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

SPSs allow knowledge about the control aspects and processing resource requirements of the system to
be encoded so that the system can intelligently plan its own activity to meet deadlines and make the most
effective use of its resources. An SPS is composed of elements representing the computation required to
perform some primitive function or sub-functional step. Associated with each element is a time function
(or a set of time functions) that estimates the time required to execute this SPS element in its current
state, the implicit knowledge about that element's relative position in the structure and meta-knowledge
about the effect of this element's invocation on other elements.

An SPS element may support a set of alternative computing strategies to perform its function. These
alternative strategies trade off time (or other resources) for solution quality, allowing the system to provide
hasty but adequate answers when severely time-constrained, but also to provide high-quality solutions
under less stressful circumstances.

Each SP structure has a local controller that accepts external input in the form of time and resource
constraints. The local controller composes (elaborates) an instance of the structure by selecting from
alternative processing strategies that will perform the required function within the imposed constraints.

Nonmonotonicity and Truth Maintenance
The RTAI environment is dynamic and nonmonotonic. Data received and conclusions reached by the
system may have to be changed when new information is received that alters the support for a previous
conclusion. Sometimes, data merely gets out of date. The system must take care of maintaining the
consistency and integrity of the KB. Using a Truth Maintenance System (TMS), revision of belief is
handled by finding the working memory element (WME) that must be adjusted and adjusting this and all
WMEs supported by it. For example, if the evidence supporting a conclusion is adjusted (say from being
believed to being disbelieved), this evidence is withdrawn together with the conclusions derived from it
and the other conclusions derived from the first conclusions and so on along the chain [2].

Continuous Operation
Real-time systems run continuously. For continuous operation, there must be a mechanism to clean up
old memory elements, either by deleting them or by archiving them for later retrieval as necessary. In
addition, the system must have an efficient method for continuously allocating. deallocating and garbage
collection of unused memory. Memory management overhead must not degrade the performance of the
system. WMEs that have served their purpose must be removed. In continuous operation, accumulation
of old useless data in the working memory not only creates a memory space problem but can also
instantiate the wrong productions in a data driven production engine. Removal of multiple WMEs must be
done with care such that the system does not unintentionally trigger rules which might be satisfied when
only a partial set of working memory elements have been removed. For example, the ability of a rule to
fire may depend not only on the presence of some elements, but also on the absence of others.
Continuous operation also implies that there may be times when there are no rules activated and wailing
to fire. The inference engine must not terminate because no rule is eligible to fire.

Asynchronicity
External events such as sensor inputs occur asynchronously. In addition, events may have different
levels of importance. Therefore, the system may have to reschedule processing of less important tasks in
order to handle priority interrupts. To provide this capability, the real-time processing environment must
accommodate interrupts on two levels. At a low level, interrupts are used to invoke special procedure
(e.g., filter input data). At a higher level, interrupts must provide for the re-direction of control as the result
of the asynchronous external event. This differs from normal interrupt processing in that the control path
in knowledge-based systems cannot be represented simply as a new program counter value, and further,
the consistency of the state context (which may be visible to both interrupted and interrupting control
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paths) must be maintained. Priorities assigned to a task may be context dependent based on the total,
current operational state of the system.

Temporal Reasoning
A real-time system must have the ability to reason about past, present and future events as well as the
sequence in which events happen. Time may serve as a gating factor for computational resources and
also acts as a description for certain data and knowledge characteristics. The implication is that time
dependent variables must be represented in the KB and that inferencing techniques exploit these
properties to find rules more efficiently.

Temporal reasoning requires a logic for describing and relationships about events and time. Allen
suggests thirteen possible relationships (X before Y, X equal Y, X during Y, etc.) which must be
considered in the inferencing process [14, 15]. Gallon extended Allen's work to cover continuous
processes occurring throughout time [16]. Other work by McDermott [17] and Dean [18-20] is also
relevant to temporal reasoning.

A Real-Time AI Processing Environment
The previous paragraphs have addressed some of the critical issues impacting the design of real-time AI
systems. The following paragraphs describe the architecture of a real-time execution environment
currently under development at Reticular Systems, Inc. This environment was purposefully designed to
handle the unique problems encountered in real-time AI processing. The environment provides the
software support tools, libraries and infrastructure required for executing teal-time AI applications in an
embedded environment.

Figure 1 illustrates the conceptual organization of the execution environment. The execution environment
is modeled as a seven layer stack. Each layer of the stack provides certain services to the execution
environment. The bottom Physical Layer represents the physical hardware that executes the real-time
system. Minimum hardware resources include a real-time clock and interrupt recognition and handling
hardware.

Figure 1. Real-Time Knowledge Processing Environment
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The next layer of the environment is the Reactive Executive Layer. The Reactive Executive Layer
provides many of the services that a traditional real-time executive provides. Typical services include
memory management, task scheduling and task synchronization as well as interrupt service.

The Algorithmic Support layer provides a library of high-performance algorithms which are optimized for
real-time execution and are available for use by upper layers of the execution environment. Algorithms
include RTA*, Rete and TREAT match algorithms and various dynamic programming algorithms (e.g.,
simulated annealing) which are required for AI problem solving.

The next layer in the stack is in many ways the most important layer. The Reflexive Executive layer
provides the interface between the inference mechanism and the application program(s). The Reflexive
Executive Layer is responsible for controlling the overall problem-solving process and provides for both
focus of controlling the overall problem-solving process and provides for both focus of attention and
control of system operation. The following paragraphs describe these two functions in more detail.

Focus of attention
When a significant event occurs, a real-time system must be able to focus its resources on the important
goals. This may mean (a) employing new knowledge, (b) modify the set of sensors currently being used
and/or changing the rate at which data is being analyzed.

The critical constraint is to act within a time budget. In recognizing time constraints, a system must
recognize goals as well as alternative paths to reach them. Thus dynamic circumstances require the
system to focus on immediate outcomes and assess the outcomes in light of the over-riding goals. To
modify the processing steps, both problem solving goals and the control strategies must be explicit and
modifiable. The system must focus on sub-task or sub-goal evaluation and select the correct inferencing
procedures [13].

Hayes-Roth suggest that there are three kinds of focus operations necessary for use in real-time
intelligent systems [21-23]. These are information-focusing operations, resource-focusing operations and
load-balancing operations. Information-focusing operations are triggered by changes in the systems
meta-level control plan and sends focus instructions to the sensor input subsystem to discriminate
incoming sensor data. Resource-focusing operations are also triggered by changes in the system's meta-
level control plan and "modulates" the overall input data rate in anticipation of changing resource
requirements. Load-balancing operations are triggered by overflow or underflow of input buffers and also
modulate the overall input data rate but do so in response to unanticipated changes in resource
demands. With these operations, a system can focus its attention in accordance with the current meta-
level control plans, goals and available resources. The system is thus able to protect itself from being
swamped by non-critical inputs. However, the system also remains sensitive to exceptional events
outside its current focus of attention.

The first goal of the real-time knowledge architecture is to provide guaranteed responses times for critical
events. This implies, first, the ability to identify critical events when they occur; second, the ability to
establish deadlines for processing completion (knowing when the answer or response is required); and
third, the ability to re-direct appropriate resources to accomplish the needed processing, interrupting (in a
recoverable way) current processing, if necessary. In addition, this implies the ability to predict (or control)
the execution time of knowledge-based modules. A problem solver's control component cannot and
should not reason about individual tasks but instead should reason about how groups of tasks lead to
acceptable overall solutions.
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Control
While faster hardware and efficient and predictable use of resources by the underlying operating system
can improve the real-time processing of individual tasks, a problem solver needs real-time control
mechanisms for dealing with the larger grained issues of solving complex problems involving hundred of
interdependent tasks. The control mechanism must adoptively generate the most acceptable solutions
which meet deadlines and the users' needs when they cannot find optimal solutions in time.

The components of the control mechanism include a control-manager, a control-scheduler, a control-
executor and a control-planner. The control-manager uses recent events to identify and rate executable
reasoning operations. The control-scheduler determines which of the identified executable operations
should be executed and when to execute them, based on their ratings. The control-executor executes
each operation. The control planner generates a temporally organized pattern of control decisions, each
of which describes a class of operations that the environment needs to perform over some period of time.
Multiple plans for performing concurrent tasks may coexist in the control plan. This model for the control
mechanism is motivated by the intelligent agent architecture of [21-23].

The top layer of the execution environment is the Problem-Solving or Application layer. The user's AI-
based application program is situated at this layer and uses all of the resources in the lower layers. If
SPSs are used in constructing the application program, then the reflective executive layer can control the
scheduling and execution of each SPS.

Summary
We have described our research and development efforts in defining a software environment suitable for
execution of real-time embedded AI programs. The execution environment provides the software tools
and infrastructure required for execution of knowledge-based software. The environment provides both
high-level and low-level executive control, scheduling and management functions. The real-time
execution environment provides:

• an architecture that allows timely, efficient, and continuous operation, good knowledge about the
domain, a focusing mechanism and working memory that allows the representation of alternative
and competing hypotheses. The KB includes both domain knowledge, working memory, and
control knowledge to explicitly represent control strategies that guide the inference process.

• an inference engine that includes an intelligent scheduler and interpreter, a mechanism for
handling uncertainty and maintaining KB integrity, a temporal reasoning mechanism, an interrupt
handler with the ability to receive asynchronous inputs and memory management, garbage
collection and archiving facilities.
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